South Rim of the Grand Canyon Trip 2012 Trip Day 2

Sunday May 27





Travel  470 mile today

Catsup Bottle

Welcome to the Official  
World's Largest Catsup Bottle  
Web Site and Fan Club!  
Collinsville, Illinois U.S.A. 

Join us as we celebrate 60 years of 
roadside architecture at its best.

The World's Largest Catsup Bottle stands proudly next to Route 159, just south of downtown Collinsville, Illinois. This unique 170 ft. tall water tower was built in 1949 by the W.E. Caldwell Company for the G.S. Suppiger catsup bottling plant - bottlers of Brooks old original rich & tangy catsup. 

In 1995, due to the efforts of the Catsup Bottle Preservation Group, this landmark roadside attraction was saved from demolition and beautifully restored to its original appearance. 

Recognized the world over as an excellent example of 20th century roadside Americana, the World's Largest Catsup Bottle regularly garners national attention and attracts visitors and tourists every day. 

In August of 2002 it was named to the National Register of Historic Places. 



Do they still make Brooks catsup?  
Yes, we are happy to report that Brooks brand ketchup is still being made. The Brooks brand is owned by Birds Eye Foods, and the product is actually manufactured in Canada. But, due to it's limited distribution, it is rather hard to come by in most parts of the country.  

Where can I buy Brooks ketchup?  
Unfortunately, we don't have an answer that question. Brooks Foods is owned by our friends at Birds Eye, and you will need to check with them as to their retail outlets. 
For your convenience, however, we have made Brooks ketchup available through our web site by clicking here!

What is the difference between "catsup" and "ketchup" ? 
There really is no difference. The best we've been able to figure out is that it really just boils down to a spelling preference of the company producing the product. There used to be as many "catsup" products as there were "ketchup." But the overwhelming success of Heinz and the fact that the US Food and Drug Administration spells it "ketchup" makes the "K" spelling far more common. In fact, a few years ago, even the makers of Brooks changed the name of their product from "catsup" to "ketchup." 

How old is the Brooks catsup bottle water tower and when was the restoration? 
It was built in 1949 by Caldwell Tanks of Louisville, Kentucky. The Catsup Bottle Preservation Group began fundraising efforts in 1993. The restoration was completed in June of 1995. In August of 2002 the Brooks Catsup Bottle Water Tower was named to the National Register of Historic Places. 

Just how big is the World's Largest Catsup Bottle? 
It's 170 ft tall. That's a 70 ft tall riveted steel bottle on top of 100 ft tall steel legs. The diameter at the base of the bottle is 25 ft and the diameter of the cap is 8 ft. It has a capacity of 100,000 gallons. 

Is it really filled with catsup? 
Heheheheheh, we'll never tell.

Missouri S&T Stonehenge


The Missouri S&T Stonehenge is a partial reconstruction of Stonehenge, the ancient megalith located on Salisbury Plain 75 miles Southwest of London. It stands for many things; a lasting monument to man's drive for knowledge and engineering, the largest monument to ever be cut with a waterjet, and a link from the past into the modern. It was dedicated on June 20, 1984 or the summer solstice, at the site of the northwest edge of campus. Approximately 160 tons of granite were used in the monument. The rock was cut to the proper dimensions by Missouri S&T's Waterjet equipment. 

What is Stonehenge?

The three rings of stones which make up the Missouri S&T-Stonehenge were inspired by a monument created in Southern Britain some 5,000 years ago. This original Stonehenge stands on a hillside about 8 miles north of the town of Salisbury. It was begun, archaeologists now believe, as a simple device by which the seasons could be foretold, using the position of the moon, relative to four stones and a ditch. This had become necessary at that time since the local tribes had changed from hunting to farming as a way of providing food and needed a means of telling when they should plant their crops.  There is, however, some variation in the path of the moon over the sky, from year to year, so that this first attempt at a calendar was not very accurate. Additional stones were added over the centuries to form complete circles, around a central altar stone, as the leading shaman or priest-equivalent (this was long before the Druids) tried to make a more accurate calendar. It was not, however, until the site was changed from marking the position of the moon to that of the sun that the "calendar" finally became accurate enough to pinpoint exact dates.

By this time the importance of the site had been shown by the use of very large stones to form two of the stone circles. It is these two circles, the outer sarsen ring, and the inner trilithon ring which are the features most people consider when they talk of Stonehenge. The outer of the two rings comprises 30 upright stones which stood 15 ft high was capped by a set of lintels notched to fit on the uprights and arranged to form a continuous walkway around the top of the stones.

Figure 1. 
The "original" Stonehenge on Salisbury Plain, England.

Within this ring the 5 trilithon (three-stone) ring stands, around the altar with the highest, or great trilithon, located behind the altar and standing some 28 ft high. Less prominent, but more necessary to tell the time between the major days when the sun shone in alignment with the great stones, a smaller bluestone ring of single stones was erected. There were 19 of these and it is likely no coincidence that 19 multiplied by 19 equals 361 which, if one adds 4 days for fasting, celebration and recovery to mark the end of the year, gives us a calendar. There is a reference in some of the ancient Gaelic legends to days "when time stands still." (The Bahai faith has also, quite independently, developed such a calendar.) An alternative explanation has been proposed by Gerald Hawkins, who suggests that these nineteen stones are related to the 18.61 year cycle during which the moon-rise position will oscillate along the local horizon.

This then, very simply, was the basic model from which the Missouri S&T-Stonehenge idea was developed. The word stonehenge itself means "hanging stone" (for more information see bibliography) from the lintels that cap the rocks.

Figure 2. 
(From the left) Dr Senne, Mr Bevan, Dr Carlson and Chancellor Marchello

Why build a Stonehenge here?

The Missouri University of Science and Technologyis a leading University in engineering, computer science and mining technology. When Dr. Joseph Marchello became Chancellor, he came from the University of Maryland, where he had helped found the Center for Archaeo-Astronomy. This interest, and the unique combination of expertise at Rolla, especially that of Dr Joseph Senne, then Chairman of Civil Engineering and a local astronomer, and the Missouri S&T high pressure waterjet group, led him to propose construction of the project to the alumni, who funded it.

Figure 3. 
Original NSF panel -front: Dr. Summers (Missouri S&T); Mr. Tessner (Ga Tech); Mr. Stengel (Northwest Granite); Mr. Ralph (Barre, VT); 2nd row Mr. Tyler (Century Granite); Dr. Hakala (NSF); Mr. McGarity (Harmony Blue); Mr. Harper (Apex Granite); 3rd row Mr. Wright (Ga Tech); Mr. Coggins (Coggins Granite); Mr. Kelly (EGA).

What is the Stonehenge built from and where did it come from?

The Missouri S&T-Stonehenge is made of granite which was quarried in Elberton, Georgia. The rock is a hard igneous stone, which is commonly used for monuments. Elberton, Georgia is a major center of the American Granite Quarrying industry. This happened partially because, in 1978, the National Science Foundation funded a study to find better ways of quarrying granite in the United States. One of the ways that were tested was through the use of high pressure waterjets and Dr. Summers of the Missouri S&T RMERC was one of the panelists who worked on that program.

It is interesting to note that one of the quarries in which the original testing of waterjetting was carried out in 1978, later served as the source rock for the granite which forms the Missouri S&T Stonehenge. The work was subcontracted from the Elberton Granite Association to Georgia Institute of Technology. Missouri S&T carried out a field demonstration for this consortium during the week of November 27, 1978. Cutting rates of almost 24 sq.ft/hour were achieved in the overlying "sap" stone, and a slot was cut some 18 ft long and 42 inches deep. In the solid higher quality stone cutting rates were around 12 - 15 sq.ft/hour.

Why didn't we use Missouri granite?

At the time that the monument was being planned the only granite quarry in Missouri was closed, and we were unable to negotiate to obtain rock from this site. Although we received considerable help from the Missouri Department of Natural Resources, we were unable to find an alternative site from which we could economically have obtained the rock.

Figure 4. 
Wedges driven along the bedding of a block to split it.

How was the original rock cut, and was this done the same way?

The original Stonehenge is made of varieties of sandstone rock. This rock has a clear bedding plane to it, so that it can be relatively easily split to form flat surfaces. Mining in Britain had been going on for at least a thousand years before Stonehenge was built, so that skilled miners would know how, using round stone hammers (still remaining at the site) flint chisels and deer antlers, to shape the stone. Final carving to shape was probably done by manually chipping the rock, after the rocks had been moved into their final position. We surmise this from the evidence of tools which were found at the site.

Figure 5. 
Slot being cut into the solid rock with a thermal lance

The rock for the Missouri S&T-Stonehenge was originally quarried by two methods, one of which is not that much different from the original. In this method a set of wedges is placed into a line of holes along the line of break wanted. The wedges are then hit, in turn, with a hammer and, in a short time, enough force builds up along the line that the rock breaks.

When cuts must be made across the bedding, splitting won't work and the rock was cut out using a flame cutting torch, something which looks like but is much bigger than a normal oxy-acetylene torch. These lances are up to 10 ft long, and can cut the granite at about ten square feet of rock an hour. They are very noisy and are now being replaced in quarries by diamond impregnated wire cutting saws.

Figure 6. 
Typical shape of the rock blocks as received at Rolla.

In modern quarrying the rock is broken out from the solid in large blocks which are then split into smaller pieces by line drilling. At the time that the rock was quarried for our Stonehenge, however, this practice was not common, and the rock which we received was not cut into the more regular shapes which are now produced from most quarries.

Figure 7. 
Cutting nozzle, showing the jets at low pressure.

In fact, since this brochure was first prepared the technology has changed again twice. The first change was to the use of diamond wire sawing. In this method a hole is drilled along the back edges of a cut and a long wire is threaded throught the hole. At intervals along the wire small beads of plastic are mounted, which contain diamond particles. The wire is tensioned and formed into a loop, which is continuously pulled through the cut. This creates a very narrow cut (which increases the amount of quality granite produced) and leaves a very smooth surface which can be used as one of the edges of the stone, whereas with the earlier methods the edge had later to be removed. (The latest method will be discussed later). Those earlier methods left the rock which we received in Rolla in a ragged shape.

Figure 8. 
Cutting Frame used to carve the individual rocks. 

Once the rock was brought to Rolla a then novel method of mining, pioneered at Missouri S&T, was used to cut the rock. Water was pressurized to 15,000 psi (7.5 tons to the square inch) and forced through a cutting lance fitted with two small holes, each about 0.04 inches wide (about the size of the wire in a paperclip).

Figure 9. 
Carved blocks for the North trilithon legs.

These jets are spun, at a speed of 180 rpm and the whole cutting assembly moves over the rock at a speed of 10 ft/min. As the jets hit the rock, they cut a slot between a quarter and a half inch deep and two inches wide. The cutting lance is then lowered this amount, and moved back over the slot. A frame was erected at the Rock Mechanics and Explosives Research Center to cut the rock. It was assembled from wooden ties and radio antenna mast sections and provided a base along which the cutting lance was moved. A wire mesh screen was fitted around the frame to protect the operator from the small pieces of flying rock which were removed by the jets during the cutting process. The cutting lance was pulled along the frame using a bicycle chain, and two small hydraulic motors were used, one to turn the nozzle assembly, and the other to draw it along the rock surface. During the course of the rock cutting the jets were able to cut an average of sixteen square feet of rock an hour. The generator used to power the entire operation used between four and six gallons of fuel an hour.

Figure 10. 
Detail of the lower analemma stone, before it was covered by soil.

In this way a relatively straight cut can be made on the rock surface without further damage to the rock. You can see the lines left by individual passes of the jets on some of the rocks.

Figure 11. 
The final group of students who completed the rock cutting (Dr. Mazurkiewicz is at the right and Mr. Gabriele who provided the crane service is at the back).

The base of the analemma stone was left partially uncut so that future generations could see how it was done (although it is buried under the current ground level). The lower analemma stone sits on a concrete pad and has two slots in its base, so that it can be re-leveled if necessary. The organizing committee felt that this was an important consideration, when it is recognized that Missouri contains a fault at New Madrid which caused one of the largest earthquakes in recorded American history. It will be easier to re-align the smaller analemma blocks, rather than the trilithons, after the next such earthquake.

Missouri S&T-Stonehenge is the first major structure to be carved using high pressure waterjets, it marks the transition from mechanical excavation of rock to hydraulic excavation and thus is a major mining milestone.

The monument was carved by a group now known as the High Pressure Waterjet Laboratory within the Rock Mechanics and Explosives Research Center at Missouri S&T. Under the overall direction of Dr. Summers the day-to-day work was supervised by Dr. Marian Mazurkiewicz and carried out largely by a group of undergraduate students. The rock was moved around during the cutting process using a crane.